Единица измерения напряжения электрического поля. Определение напряженности в любой точке электрического поля

Напряженность электрического поля является векторной величиной, а значит имеет численную величину и направление. Величина напряженности электрического поля имеет свою размерность, которая зависит от способа ее вычисления.

Электрическая сила взаимодействия зарядов описывается как бесконтактное действие, а иначе говоря имеет место дальнодействие, то есть действие на расстоянии. Для того, чтобы описать такое дальнодействие удобно ввести понятие электрического поля и с его помощью объяснить действие на расстоянии.

Давайте возьмем электрический заряд, который мы обозначим символом Q . Этот электрический заряд создает электрическое поле, то есть он является источником действия силы. Так как во вселенной всегда имеется хотя бы один положительный и хотя бы один отрицательный заряд, которые действую друг на друга на любом, даже бесконечно далеком расстоянии, то любой заряд является источником силы , а значит уместно описание создаваемого ими электрического поля. В нашем случае заряд Q является источником электрического поля и мы будем его рассматривать именно как источник поля.

Напряженность электрического поля источника заряда может быть измерена с помощью любого другого заряда, находящегося где-то в его окрестностях. Заряд, который используется для измерения напряженности электрического поля называют пробным зарядом , так как он используется для проверки напряженности поля. Пробный заряд имеет некоторое количество заряда и обозначается символом q .

При помещении пробного заряда в электрическое поле источника силы (заряд Q ), пробный заряд будет испытывать действие электрической силы - или притяжения, или отталкивания. Силу можно обозначить как это обычно принять в физике символом F . Тогда величину электрического поля можно определить просто как отношение силы к величине пробного заряда.

Если напряженность электрического поля обозначается символом E , то уравнение может быть переписано в символической форме как

Стандартные метрические единицы измерения напряженности электрического поля возникают из его определения. Таким образом напряженность электрического поля определяется как сила равная 1 Ньютону (Н) деленному на 1 Кулон (Кл). Напряженность электрического поля измеряется в Ньютон/Кулон или иначе Н/Кл. В системе СИ также измеряется в Вольт/метр . Для понимания сути такого предмета как гораздо важнее размерность в метрической системе в Н/Кл , потому как в такой размерность отражается происхождение такой характеристики как напряженность поля. Обозначение в Вольт/Метр делает понятие потенциала поля (Вольт) базовым, что в некоторых областях удобно, но не во всех.

В приведенном выше примере участвуют два заряда Q (источник ) и q пробный . Оба этих заряда являются источником силы, но какой из них следует применять в вышеприведенной формуле? В формуле присутствует только один заряд и это пробный заряд q (не источник).

Не зависит от количества пробного заряда q . На первый взгляд это может привести вас в замешательство, если, конечно, вы задумаетесь над этим. Беда в том, что не все имеют полезную привычку думать и пребывают в так называемом блаженном невежестве. Если вы не думаете, то и замешательства такого рода у вас и не возникнет. Так как же напряженность электрического поля не зависит от q , если q присутствует в уравнении? Отличный вопрос! Но если вы подумаете об этом немного, вы сможете ответить на этот вопрос. Увеличение количества пробного заряда q - скажем, в 2 раза - увеличится и знаменатель уравнения в 2 раза. Но в соответствии с Законом Кулона , увеличение заряда также увеличит пропорционально и порождаемую силу F . Увеличится заряд в 2 раза, тогда и сила F возрастет в то же количество раз. Так как знаменатель в уравнении увеличивается в два раза (или три, или четыре), то и числитель увеличится во столько же раз. Эти два изменения компенсируют друг друга, так что можно смело сказать, что напряженность электрического поля не зависит от количества пробного заряда.

Таким образом, независимо от того, какого количества пробный заряд q используется в уравнении, напряженность электрического поля E в любой заданной точке вокруг заряда Q (источника ) будет одинаковой при измерении или вычислении.

Более подробно о формуле напряженности электрического поля

Выше мы коснулись определения напряженности электрического поля в том, как она измеряется. Теперь мы попробуем исследовать более развернутое уравнение с переменными, чтобы яснее представить саму суть вычисления и измерения напряженности электрического поля. Из уравнения мы сможем увидеть, что именно влияет, а что нет. Для этого нам прежде всего потребуется вернутся к уравнению Закона Кулона .

Закон Кулона утверждает, что электрическая сила F между двумя зарядами прямо пропорциональна произведению количества этих зарядов и обратно пропорциональна квадрату расстояния между их центрами.

Если внести в уравнение Закона Кулона два наших заряда Q (источник ) и q (пробный заряд), тогда мы получим следующую запись:


Если выражение для электрической силы F , как она определяется Законом Кулона подставить в уравнение для напряженности электрического поля E , которое приведено выше, тогда мы получим следующее уравнение:

Обратите внимание, что пробный заряд q был сокращен, то есть убран как в числителе так и в знаменателе. Новая формула для напряженности электрического поля E выражает напряженность поля в терминах двух переменных, которые влияют на нее. Напряженность электрического поля зависит от количества исходного заряда Q и от расстоянии от этого заряда d до точки пространства, то есть геометрического места, в котором и определяется значение напряженности. Таким образом у нас появилась возможность характеризовать электрическое поле через его напряженность.

Закон обратных квадратов

Как и все формулы в физике, формулы для напряженности электрического поля могут быть использованы для алгебраического решения задач (проблем) физики. Точно также, как и любую другую формулу в ее алгебраической записи, можно исследовать и формулу напряженности электрического поля. Такое исследование способствует более глубокому пониманию сути физического явления и характеристик этого явления. Одна из особенностей формулы напряженности поля является то, что она иллюстрирует обратную квадратичную зависимость между напряженностью электрического поля и расстоянием до точки в пространстве от источника поля. Сила электрического поля, создаваемого в источнике заряде Q обратно пропорционально квадрату расстояния от источника. Иначе говорят, что искомая величина обратно пропорциональна квадрату .

Напряженность электрического поля зависит от геометрического места в пространстве, и ее величина уменьшается с увеличением расстояния. Так, например, если расстояние увеличится в 2 раза, то напряженность уменьшится в 4 раза (2 2), если расстояния между уменьшится в 2 раза, то напряженность электрического поля увеличится в 4 раза (2 2). Если же расстояние увеличивается в 3 раза, то напряженность электрического поля уменьшается в 9 раз (3 2). Если расстояние увеличивается в 4 раза, то напряженность электрического поля уменьшается в 16 (4 2).

Направление вектора напряженности электрического поля

Как упоминалось ранее, напряженность электрического поля является векторной величиной. В отличие от скалярной величиной, векторная величина является не полностью описанной, если не определено ее направление. Величина вектора электрического поля рассчитывается как величина силы на любой пробный заряд, расположенный в электрическом поле .

Сила, действующая на пробный заряд может быть направлена либо к источнику заряда или непосредственно от него. Точное направление силы зависит от знаков пробного заряд и источника заряда, имеют ли они тот же знак заряда (тогда происходит отталкивание) или же их знаки противоположные (происходит притяжение). Чтобы решить проблему направления вектора электрического поля, направлен он к источнику или от источника были приняты правила, которые используются всеми учеными мира. Согласно этим правилам направление вектора всегда от заряда с положительным знаком полярности. Это можно представить в виде силовых линий, которые выходят из зарядов положительных знаков и заходят в заряды отрицательных знаков.

электрического поля

Электрическое поле (статическое) - поле неподвижных , электрически заряженных тел, заряды которых не изменяются во времени.

Электрическое поле обнаруживается как силовое взаимодействие заряженных тел .

При этом различают положительные и отрицательные заряды. (виды зарядов )

Заряды одного знака отталкиваются друг от друга, разного знака притягиваются . (взаимодействие зарядов)

В основе описания свойств электрического поля лежит закон Кулона, установленный опытным путем.

Закон Кулона . Между покоящимися точечными зарядами действует сила, пропорциональная произведению зарядов, обратно пропорциональная квадрату расстояния между ними и направленная по прямой от одного заряда к другому (рис. 1.1):

(1.1)

где F , - сила, действующая на заряд q

r 2 - квадратрасстояния между зарядами q 1 и q 2

F 2 - сила, действующая на заряд q 2

r 0 21 - единичный вектор, направленный от второго заряда к первому;

е 0 = 8,854 10- 12 Ф/м - электрическая постоянная.

Точечными зарядами можно считать заряженные тела, размеры которых малы по сравнению с расстоянием между ними.

Основные единицы измерения :

силы в международной системе единиц (СИ) - ньютон (Н);

заряда - кулон (Кл): 1 Кл = 1 А с;

длины - метр (м).

Основными величинами, характеризующими электрическое поле , являются

напряженность ,

электрический потенциал и

разность потенциалов, или напряжение

Напряженностью электрического поля называется мера интенсивности его сил, равная отношению силы F , действующей на пробный положи тельный точечный заряд q , вносимый в рассматриваемую точку поля, к значению заряда

(1.2)

Так же как и сила F, напряженность электрического поля ε - векторная величина, т.е. характеризуется значением и направлением действия.

Основная единица измерения напряженности электрического поля в СИ - вольт на метр (В/м).

Из формулы (1.1) следует, что напряженность электрического поля точечного заряда q на расстоянии r от него равна

(1-3)

и направлена от точки расположения заряда к точке, где определяется напряженность, если заряд положительный (рис. 1.2, а),

Рис. 1.2, а

и в противоположную сторону, если заряд отрицательный (рис. 1.2, б).

1.2 б

Если зарядов, создающих электрическое поле, несколько, то напряженность в любой точке поля равна геометрической сумме напряженностей от каждого из них в отдельности. (напряженность электростатического поля нескольких зарядов )

Пример 1.1. Определить значение и направление действия напряженности электрического поля в точке А, расположенной на расстоянияхr 1 = 1м и r 2 = 2 м от точечных зарядов

q 1 = 1,11 10 -10 Кл и q 2 = -4,44- 10 -10 Кл (рис. 1.3).

Решение. По формуле (1.3) определяем напряженности электрического поля в точке А от действия "точечных зарядов q 1 = и q 2

Направления векторов напряженности совпадаютс направлениями действия сил на пробный положительный точечный заряд, если его расположить в точке А .

Напряжённость результирующего электрического поля в точке А направлена вдоль гипотенузы прямоугольного треугольника, катетами которого являются векторы напряженностей и имеет значение

Можно говорить о поле вектора и изображать это поле линиями вектора - силовыми линиями .

Если напряженность электрического поля во всех точках одинакова, то поле однородное , например поле равномерно заряженной плоской пластины бесконечных размеров (рис. 1.4),

а если различна, то поле неоднородно , например поле двух точечных зарядов (рис. 1.5).

При перемещении вдоль произвольного участка длиной заряда q в электрическом поле под действием сил поля F совершается работа

При этом работа по переносу заряда вдоль произвольного замкнутого контура равна нулю .

Действительно, так как все свойства поля определяются относительным расположением зарядов, то перенос заряда по замкнутому контуру и возвращению в исходную точку означает первоначальные распределение зарядов и запас энергии. Это означает также, что с учетом (1.4) циркуляция вектора напряженности равна нулю

Условие (1.5) позволяет характеризовать электрическое поле в каждой точке функцией ее координат - электрическим потенциалом .

Электрический потенциал в данной точке электрического поля с учетом (1.4) численно равен работе, которую могут совершить силы электрического поля при переносе единичного положительного заряда из данной точки в точку, потенциал которой принят равным нулю.

Разность потенциалов двух точек 1 и 2 , или напряжение между точками 1 и 2, электрического поля

(1.7)

численно равна работе, которую могут совершить силы электрического поля при переносе единичного положительного заряда из точки 1 в точку 2 .

Единица измерения электрического потенциала в СИ - вольт (В).

Силы, действующие на дистанции, иногда называются силами поля. Если зарядить объект, то он создаст электрическое поле – область с изменившимися характеристиками, его окружающую. Произвольный заряд, попавший в зону электрического поля, будет подвергаться действию его сил. На эти силы влияют степень заряженности объекта и дистанция до него.

Силы и заряды

Допустим, имеется какой-то изначальный электрозаряд Q, создающий электрическое поле. Сила этого поля измеряется электрозарядом, пребывающим в непосредственной близости. Этот электрозаряд именуют тестовым, поскольку он служит в качестве испытательного при определении напряженности и слишком маленький для влияния на создаваемое ЭП.

Контрольный электрозаряд будет именоваться q и обладать каким-то количественным значением. Когда его помещают в электрическое поле, он подвергается действующим притягивающим или отталкивающим силам F.

В качестве формулы напряженности электрического поля, обозначенной латинской буквой E , служит математическая запись:

Сила измеряется в ньютонах (Н), заряд – в кулонах (Кл). Соответственно, для напряженности используется единица – Н/Кл.

Другой часто используемой на практике единицей для однородных ЭП служит В/м. Это следствие формулы:

То есть E зависит от напряжения ЭП (разности потенциалов между двумя его точками) и расстояния.

Зависит ли напряженность от количественного значения электрозаряда? Из формулы можно видеть, что увеличение q влечет уменьшение Е. Но согласно закону Кулона, больший заряд также означает большую электрическую силу. Например, двукратное увеличение электрозаряда вызовет двукратное увеличение F. Следовательно, изменения напряженности не произойдет.

Важно! На напряженность ЭП не влияет количественный показатель испытательного заряда.

Как направлен вектор электрического поля

Для векторной величины обязательно применяется две характеристики: количественное значение и направление. На изначальный заряд действует сила, направленная к нему либо в противоположную сторону. Выбор достоверного направления определяется зарядным знаком. Чтобы разрешить вопрос, в какую сторону направляются линии напряженности, было принято направление силы F, воздействующей на положительный электрозаряд.

Важно! Линии напряженности поля, созданного электрозарядом, направлены от заряда со знаком «плюс» к заряду со знаком «минус». Если вообразить произвольный плюсовой исходный заряд, то линии будут выходить из него во все стороны. Для минусового заряда наблюдается наоборот вхождение силовых линий со всех окружающих сторон.

Наглядное отображение векторных величин ЭП производится посредством силовых линий. Смоделированный образец ЭП может состоять из бесконечного числа линий, которые располагаются по определенным правилам, дающим как можно больше информации о характере ЭП.

Правила вычерчивания силовых линий:

  1. Сильнейшим электрическим полем обладают электрозаряды большей величины. На схематическом рисунке это может быть показано увеличением частоты линий;
  2. В областях соединения с поверхностью объекта линии всегда ей перпендикулярны. На поверхности объектов правильной и неправильной формы никогда не существует электрической силы, параллельной ей. При существовании такой силы любой избыточный заряд на поверхности начал бы движение, и возник бы электрический ток внутри объекта, что никогда не бывает в статическом электричестве;
  3. При покидании поверхности объекта сила может менять направление из-за влияния ЭП других зарядов;
  4. Электрические линии не должны пересекаться. Если они пересекаются в какой-то точке пространства, тогда в этом пункте должно существовать два ЭП с собственным индивидуальным направлением. Это невыполнимое условие, так как каждое место ЭП имеет свою напряженность и направление, с ним связанное.

Силовые линии для конденсатора будут идти перпендикулярно пластинам, но у краев приобретать выпуклость. Это свидетельствует о нарушении однородности ЭП.

Учитывая условие о положительном электрозаряде, можно определиться с направлением вектора напряженности электрического поля. Этот вектор направлен в сторону силы, действующей на электрозаряд со знаком «плюс». В ситуациях, когда ЭП создается несколькими электрозарядами, вектор находится как результат геометрического суммирования всех сил, воздействиям которых подвержен испытательный заряд.

В то же время под линиями напряженности электрического поля понимается совокупность линий в зоне действия ЭП, касательными к которым будут в любом произвольном пункте векторы Е.

Если создается ЭП от двух и более зарядов, появляются линии, окружающие их конфигурацию. Такие построения являются громоздкими и выполняются с помощью компьютерной графики. При решении практических задач используется результирующий вектор напряженности электрического поля для заданных точек.

Закон Кулона определяет электрическую силу:

F = (K x q x Q)/r², где:

  • F – электрическая сила, направленная по линии между двумя электрозарядами;
  • К – постоянная пропорциональности;
  • q и Q – количественные величины зарядов (Кл);
  • r – дистанция между ними.

Постоянную пропорциональность находят из соотношения:

K = 1/(4π x ε).

Величина постоянной зависит от среды, в которой располагаются заряды (диэлектрическая проницаемость).

Тогда F =1/(4π x ε) х (q x Q)/r² .

Закон действует в природной среде. Для теоретического расчета изначально предполагается, что электрозаряды находятся в свободном пространстве (вакууме). Тогда значение ε = 8,85 х 10(в -12 степени), а K = 1/(4π x ε) = 9 х 10(в 9 степени).

Важно! Формулы, описывающие ситуации, где есть сферическая симметрия (большинство случаев), имеют в своем составе 4π. Если имеется цилиндрическая симметрия, появляется 2π.

Чтобы вычислить модуль напряженности, нужно подставить в формулу для Е математическое выражение закона Кулона:

E = F/q = 1/(4π x ε) х (q x Q)/(r² x q) = 1/(4π x ε) х Q/r²,

где Q – исходный заряд, создающий ЭП.

Чтобы найти напряженность ЭП в конкретной точке, надо разместить в этой точке пробный заряд, определить дистанцию до него и вычислить E по формуле.

Закон обратных квадратов

В формульном отображении закона Кулона дистанция между электрозарядами появляется в уравнении как 1/r². Значит, будет справедливым применение закона обратных квадратов. Другим известным таким законом является закон гравитации Ньютона.

Это выражение иллюстрирует, как изменение одной переменной может повлиять на другую. Математическая запись закона:

Е1/Е2 = r2²/r1².

Значение напряженности поля зависит от местоположения выбранной точки, его величина уменьшается с удалением от заряда. Если взять напряженности ЭП в двух разных точках, то отношение их количественного значения будет находиться в обратно пропорциональной зависимости от квадратов расстояния.

Для измерения напряженности ЭП в практических условиях существуют специальные приборы, например, тестер VX 0100.

Видео

Как вы уже знаете из курса физики основной школы, электрическое взаимодействие заряженных тел осуществляется посредством электрического поля: каждое заряженное тело создает вокруг себя электрическое поле, которое действует на другие заряженные тела. Представление об электрическом поле ввел английский ученый Майкл Фарадей в первой половине 19-го века.

Электрическое поле в данной точке пространства можно охарактеризовать с помощью силы, действующей со стороны этого поля на точечный заряд, помещенный в данную точку. (Этот заряд должен быть достаточно мал, чтобы создаваемое им поле не изменяло распределения зарядов, которые создают данное поле.)

Как показывает опыт, сила , действующая на заряд q, пропорциональна величине этого заряда. Следовательно, отношение силы к заряду не зависит от величины заряда и характеризует само электрическое поле.

Напряженностью электрического поля в данной точке называют физическую величину, равную отношению силы , действующей со стороны поля на заряд q, помещенный в данную точку поля, к величине этого заряда:

Напряженность поля – векторная величина. Ее направление в каждой точке совпадает с направлением силы, действующей на положительный заряд, помещенный в эту точку.

Единицей напряженности поля является 1 Н/Кл. 1 Н/Кл – небольшая напряженность. Например, напряженность электрического поля вблизи поверхности Земли, обусловленная электрическим зарядом Земли, составляет примерно 130 Н/Кл.

Если известна напряженность поля в данной точке, то можно найти силу , действующую на заряд q, помещенный в эту точку, по формуле

Из формул (1) и (2) следует, что направление напряженности поля в данной точке совпадает с направлением силы, действующей на положительный заряд, помещенный в эту точку.

Напряженность поля точечного заряда

Если внести в поле положительного точечного заряда Q другой положительный заряд, он будет отталкиваться от заряда Q.

Следовательно, напряженность поля положительного точечного заряда во всех точках пространства направлена от этого заряда. На рисунке 51.1 изображены векторы напряженности поля точечного заряда в некоторых точках. Видно, что при удалении от заряда модуль напряженности поля уменьшается.

1. Объясните, почему модуль напряженности поля точечного заряда Q на расстоянии r от заряда выражается формулой

Подсказка. Воспользуйтесь законом Кулона и определением напряженности поля.

2. Чему равна напряженность поля точечного заряда 2 нКл на расстоянии 2 м от него?

3. Модуль напряженности поля точечного заряда на расстоянии 0,5 м от него равен 90 Н/Кл. Чему может быть равен этот заряд?

Принцип суперпозиции полей

Если заряд находится в поле, созданном несколькими зарядами, то каждый из этих зарядов действует на данный заряд независимо от других.

Отсюда следует, что равнодействующая сил, действующих на данный заряд со стороны других зарядов, равна векторной сумме сил, действующих на данный заряд со стороны каждого из остальных зарядов.

Это означает, что справедлив принцип суперпозиции полей:

напряженность поля, созданного несколькими зарядами, равна векторной сумме напряженностей полей, созданных каждым из зарядов:

Используя принцип суперпозиции, можно найти напряженность поля, создаваемого несколькими зарядами.

4. Два точечных заряда расположены на расстоянии 60 см друг от друга. Модуль каждого заряда равен 8 нКл. Чему равен модуль напряженности поля, создаваемого этими зарядами:
а) в точке, расположенной на середине отрезка, соединяющего заряды, если заряды одноименные? разноименные?
б) в точке, находящейся на расстоянии 60 см от каждого заряда, если заряды одноименные? разноименные?

Для каждого из этих случаев сделайте в тетради чертеж, поясняющий решение.

2. Линии напряженности

На примере поля точечного заряда (рис. 51.1) можно заметить, что векторы напряженности электрического поля в разных точках пространства выстраиваются вдоль некоторых линий.

В случае точечного заряда эти линии представляют собой прямые лучи, проведенные из точки, в которой находится заряд. В поле, созданном несколькими зарядами, зти линии будут некоторыми кривыми, причем напряженность поля в каждой точке будет направлена по касательной к одной из таких линий.

Воображаемые линии, касательные к которым в каждой точке совпадают с направлением напряженности электрического поля, называют линиями напряженности электрического поля.

Линии напряженности начинаются на положительных зарядах и заканчиваются на отрицательных. Густота линий напряженности пропорциональна модулю напряженности.

5. Объясните, почему линии напряженности электрического поля не могут пересекаться.

Поля точечных зарядов

6. Объясните, почему линии напряженности электрического поля положительного и отрицательного точечных зарядов имеют вид, изображенный на рисунках 51.2, а и 51.2, б.


7. На рисунке 51.3 изображены линии напряженности поля, созданного одинаковыми по модулю зарядами (разноименными и одноименными). В некоторых точках для наглядности изображены векторы напряженности поля.


а) Перенесите рисунки в тетрадь и обозначьте на них знаки зарядов.
б) Изобразите в тетради линии напряженности поля, созданного двумя одноименными зарядами, которое не совпадает ни с одним из приведенных рисунков.
в) Чему равна напряженность поля в центральной точке рисунка 51.3, б (в середине отрезка, соединяющего заряды? Поясните ваш ответ с помощью закона Кулона.

Поле равномерно заряженной сферы

На рисунке 51.4 изображены линии напряженности электрического поля равномерно заряженной сферы.

Мы видим, что вне сферы зто поле совпадает с полем точечного заряда, ровного суммарному заряду сферы и расположенного в центре сферы.
Можно доказать, что внутри заряженной сферы напряженность поля ровна нулю. (Доказательство этого факта выходит за рамки нашего круга.)

8. На сфере радиусом 5 см находится заряд 6 нКл. Чему равна напряженность поля этого заряда:
а) в центре сферы?
б) на расстоянии 4 см от центра сферы?
в) на расстоянии 10 см от центра сферы?
г) вне сферы на расстоянии 1 см от ближайшей к этой точке поверхности сферы?

Однако напряженность электрического поля внутри заряженной сферы не обязательно равна нулю! Если внутри этой сферы находится заряженное тело, то согласно принципу суперпозиции напряженность электрического поля равна векторной сумме напряженности поля, создаваемого зарядом этого тела, и напряженности поля, создаваемого зарядом сферы.

Внутри сферы поле создается только заряженным телом, находящимся внутри сферы, потому что напряженность поля, созданного заряженной сферой, внутри сферы равна нулю. А в любой точке вне сферы напряженность поля можно найти, складывая векторы напряженности поля, создаваемого телом, расположенным внутри сферы, и поля, создаваемого зарядом сферы.

9. Имеются две концентрические (имеющие общий центр) сферы радиусом 5 см и 10 см. Заряд внутренней сферы равен 6 нКл, а заряд внешней сферы равен –9 нКл. Чему равен модуль напряженности поля в точке, находящейся от общего центра сфер на расстоянии, равном:
а) 3 см; б) 6 см; в) 8 см; г) 12 см; д) 20 см?

Поле равномерно заряженной плоскости

На рисунке 51.5 изображены линии напряженности электрического поля вблизи равномерно заряженной плоской пластины.

Будем считать, что размеры пластины намного больше расстояний от нее до тех точек пространства, в которых мы рассматриваем напряженность поля. В таких случаях говорят о поле равномерно заряженной плоскости.

Напряженность поля равномерно заряженной плоскости практически одинакова (по модулю и по направлению) во всех точках пространства по одну сторону от плоскости. Линии напряженности этого поля представляют собой параллельные прямые, перпендикулярные плоскости и расположенные на равных расстояниях друг от друга. Такое электрическое поле называют однородным.

По другую сторону плоскости изменяется только направление напряженности поля, а ее модуль остается таким же.

10. Напряженность электрического поля, создаваемого большой однородно заряженной пластиной, равна 900 Н/Кл. На расстоянии 40 см от пластины находится точечный заряд, равный по модулю 1 нКл.
а) На каком расстоянии от точечного заряда модуль напряженности его поля равен модулю напряженности поля пластины?
б) На каком расстоянии от плоскости результирующая напряженность поля плоскости и точечного заряда равна нулю, если знак точечного заряда совпадает со знаком заряда плоскости? Если знак точечного заряда противоположен знаку заряда плоскости?

Поле двух разноименно заряженных плоских пластин

Возьмем две одинаковые равномерно заряженные пластины, заряды которых равны по модулю, но противоположны по знаку. Расположим пластины параллельно друг друту на малом расстоянии друг от друга (рис. 51.6).

11. Объясните, почему в пространстве между пластинами напряженность поля в 2 раза больше, чем напряженность поля, создаваемого каждой из пластин, а вне пластин практически равна нулю.
Подсказка. Воспользуйтесь принципом суперпозиции электрических полей.

Как увидеть линии напряженности?

Поставим опыт
Поместим в электрическое поле состоящие из диэлектрика мелкие тела продолговатой формы – кристаллики, частицы манной крупы, мелко настриженные волосы и т. п. В электрическом поле они поворачиваются так, чтобы их более длинная сторона была направлена вдоль вектора напряженности поля. В результате эти тела выстраиваются вдоль линий напряженности, делая их форму видимой. На рисунке 51.7 приведены полученные таким образом «картины» электрических полей, создаваемых заряженным шариком (рис. 51.7, а) и двумя разноименно заряженными шариками (рис. 51.7, б).


Дополнительные вопросы и задания

12. Небольшой заряженный шарик массой 0,2 г подвешен на нити в однородном электрическом поле, напряженность которого направлена горизонтально и равна по модулю 50 кН/Кл.
а) Изобразите на чертеже положение равновесия шарика и силы, действующие на него.
б) Чему равен заряд шарика, если нить отклонена от вертикали на угол 30º?

13. Какова должна быть напряженность поля, чтобы капелька воды радиусом 0,01 мм находилась в этом поле в равновесии, потеряв 10 3 электронов? Как должна быть направлена напряженность поля?

Наряду с законом Кулона возможно и другое описание взаимодействия электрических зарядов.

Дальнодействие и близкодействие. Закон Кулона, подобно закону всемирного тяготения, трактует взаимодействие зарядов как «действие на расстоянии», или «дальнодействие». Действительно, кулоновская сила зависит лишь от величины зарядов и от расстояния между ними. Кулон был убежден, что промежуточная среда, т. е. «пустота» между зарядами, никакого участия во взаимодействии не принимает.

Такая точка зрения, несомненно, была навеяна впечатляющими успехами ньютоновской теории тяготения, блестяще подтверждавшейся астрономическими наблюдениями. Однако еще сам Ньютон писал: «Непонятно, каким образом неодушевленная косная материя, без посредства чего-либо иного, что нематериально, могла бы действовать на другое тело без взаимного прикосновения». Тем не менее концепция дальнодействия, основанная на представлении о мгновенном действии одного тела на другое на расстоянии без участия какой-либо промежуточной среды, еще долго доминировала в научном мировоззрении.

Идея поля как материальной среды, посредством которой осуществляется любое взаимодействие пространственно удаленных тел, была введена в физику в 30-е годы XIX века великим английским естествоиспытателем М. Фарадеем, который считал, что «материя присутствует везде, и нет промежуточного пространства, не занятого

ею». Фарадей развил последовательную концепцию электромагнитного поля, основанную на идее конечной скорости распространения взаимодействия. Законченная теория электромагнитного поля, облеченная в строгую математическую форму, была впоследствии развита другим великим английским физиком Дж. Максвеллом.

По современным представлениям электрические заряды наделяют окружающее их пространство особыми физическими свойствами - создают электрическое поле. Основным свойством поля является то, что на находящуюся в этом поле заряженную частицу действует некоторая сила, т. е. взаимодействие электрических зарядов осуществляется посредством создаваемых ими полей. Поле, создаваемое неподвижными зарядами, не изменяется со временем и называется электростатическим. Для изучения поля необходимо найти его физические характеристики. Рассматривают две такие характеристики - силовую и энергетическую.

Напряженность электрического поля. Для экспериментального изучения электрического поля в него нужно поместить пробный заряд. Практически это будет какое-то заряженное тело, которое, во-первых, должно иметь достаточно малые размеры, чтобы можно было судить о свойствах поля в определенной точке пространства, и, во-вторых, его электрический заряд должен быть достаточно малым, чтобы можно было пренебречь влиянием этого заряда на распределение зарядов, создающих изучаемое поле.

На пробный заряд, помещенный в электрическое поле, действует сила, которая зависит как от поля, так и от самого пробного заряда. Эта сила тем больше, чем больше пробный заряд. Измеряя силы, действующие на разные пробные заряды, помещенные в одну и ту же точку, можно убедиться, что отношение силы к пробному заряду уже не зависит от величины заряда. Значит, это отношение характеризует само поле. Силовой характеристикой электрического поля является напряженность Е - векторная величина, равная в каждой точке отношению силы действующей на пробный заряд помещенный в эту точку, к заряду

Другими словами, напряженность поля Е измеряется силой, действующей на единичный положительный пробный заряд. В общем случае напряженность поля разная в разных точках. Поле, в котором напряженность во всех точках одинакова как по модулю, так и по направлению, называется однородным.

Зная напряженность электрического поля, можно найти силу, действующую на любой заряд помещенный в данную точку. В соответствии с (1) выражение для этой силы имеет вид

Как же найти напряженность поля в какой-либо точке?

Напряженность электрического поля, создаваемого точечным зарядом, можно рассчитать с помощью закона Кулона. Будем рассматривать точечный заряд как источник электрического поля. Этот заряд действует на расположенный на расстоянии от него пробный заряд с силой, модуль которой равен

Поэтому в соответствии с (1), разделив это выражение на получаем модуль Е напряженности поля в точке, где расположен пробный заряд, т. е. на расстоянии от заряда

Таким образом, напряженность поля точечного заряда убывает с расстоянием обратно пропорционально квадрату расстояния или, как говорят, по закону обратных квадратов. Такое поле называют кулоновским. При приближении к создающему поле точечному заряду напряженность поля точечного заряда неограниченно возрастает: из (4) следует, что при

Коэффициент к в формуле (4) зависит от выбора системы единиц. В СГСЭ к = 1, а в СИ . Соответственно формула (4) записывается в одном из двух видов:

Единица напряженности в СГСЭ специального названия не имеет, а в СИ она называется «вольт на метр»

Вследствие изотропности пространства, т. е. эквивалентности всех направлений, электрическое поле уединенного точечного заряда сферически-симметрично. Это обстоятельство проявляется в формуле (4) в том, что модуль напряженности поля зависит только от расстояния до заряда, создающего поле. Вектор напряженности Е имеет радиальное направление: он направлен от создающего поле заряда если это положительный заряд (рис. 6а, а), и к создающему поле заряду если этот заряд отрицательный (рис. 6б).

Выражение для напряженности поля точечного заряда можно записать в векторном виде. Начало координат удобно поместить в точку, где находится заряд, создающий поле. Тогда напряженность поля в любой точке, характеризуемой радиусом-вектором дается выражением

В этом можно убедиться, сопоставив определение (1) вектора напряженности поля с формулой (2) § 1, либо отталкиваясь

непосредственно от формулы (4) и учитывая сформулированные выше соображения о направлении вектора Е.

Принцип суперпозиции. Как найти напряженность электрического поля, создаваемого произвольным распределением зарядов?

Опыт показывает, что электрические поля удовлетворяют принципу суперпозиции. Напряженность поля, создаваемого несколькими зарядами, равна векторной сумме напряженностей полей, создаваемых каждым зарядом в отдельности:

Принцип суперпозиции фактически означает, что присутствие других электрических зарядов никак не сказывается на поле, создаваемом данным зарядом. Такое свойство, когда отдельные источники действуют независимо и их действия просто складываются, присуще так называемым линейным системам, и само такое свойство физических систем называется линейностью. Происхождение этого названия связано с тем, что такие системы описываются линейными уравнениями (уравнениями первой степени).

Подчеркнем, что справедливость принципа суперпозиции для электрического поля не является логической необходимостью или чем-то само собой разумеющимся. Этот принцип представляет собой обобщение опытных фактов.

Принцип суперпозиции позволяет рассчитать напряженность поля, создаваемого любым распределением неподвижных электрических зарядов. В случае нескольких точечных зарядов рецепт расчета результирующей напряженности очевиден. Любой неточечный заряд можно мысленно разбить на такие малые части, чтобы каждую из них можно было рассматривать как точечный заряд. Напряженность электрического поля в произвольной точке находится как

векторная сумма напряженностей, создаваемых этими «точечными» зарядами. Соответствующие расчеты значительно упрощаются в тех случаях, коща в распределении создающих поле зарядов имеется определенная симметрия.

Линии напряженности. Наглядное графическое изображение электрических полей дают линии напряженности или силовые линии.

Рис. 7. Линии напряженности поля положительного и отрицательного точечных зарядов

Эти линии электрического поля проводятся таким образом, чтобы в каждой точке касательная к линии совпадала по направлению с вектором напряженности в этой точке. Иначе говоря, в любом месте вектор напряженности направлен по касательной к силовой линии, проходящей через эту точку. Силовым линиям приписывают направление: они выходят из положительных зарядов или приходят из бесконечности. Они либо оканчиваются на отрицательных зарядах, либо уходят в бесконечность. На рисунках это направление указывают стрелками на силовой линии.

Силовую линию можно провести через любую точку электрического поля.

Линии проводят гуще в тех местах, где напряженность поля больше, и реже там, где она меньше. Таким образом, густота силовых линий дает представление о модуле напряженности.

Рис. 8. Линии напряженности поля разноименных одинаковых зарядов

На рис. 7 показаны силовые линии поля уединенного положительного и отрицательного точечных зарядов. Из симметрии очевидно, что это радиальные прямые, распределенные с одинаковой густотой по всем направлениям.

Более сложный вид имеет картина линий поля, создаваемого двумя зарядами противоположных знаков. Такое поле, очевидно,

обладает осевой симметрией: вся картина остается неизменной при повороте на любой угол вокруг оси, проходящей через заряды. Когда модули зарядов одинаковы, картина линий также симметрична относительно плоскости, проходящей перпендикулярно соединяющему их отрезку через его середину (рис. 8). В этом случае силовые линии выходят из положительного заряда и все они оканчиваются на отрицательном, хотя на рис. 8 нельзя показать, как замыкаются уходящие далеко от зарядов линии.