Новые космические технологии. Александр фролов - новые космические технологии

Совершать открытия и создавать полезные изобретения в области космических технологий могут не только опытные специалисты, но и студенты, которые так или иначе хотят связать свою жизнь с космосом. Так 19 - летняя студентка Айша Мустафа (Aisha Mustafa) из университета Сохаг (Sohag University), находящегося в Египте изобрела двигатель для космических аппаратов.

В великобритании ученые начали работу над новой технологией двигателя для космических самолетов, которые смогут осуществлять выход на орбиту.

Космос полон тайн и загадок, а так же угроз для нашей планеты. Одной из угроз являются астероиды. С целью обезопасить планету, ученые из Университета Стратклайд в Глазго решили создать миниатюрные спутники оснащенные лазерами, которые смогут повлиять на движение астероидов.

Из новостей о космосе стало известно что, в японской компании Obayashi решили построить лифт, на котором можно подняться в космос. Осуществление такого плана намечено к 2050 году. Компания Obayashi планирует построить космодром на земле с космической станцией находящейся на геостационарной орбите в 35500 км. над поверхностью Земли.

Все мы знаем о наличии мусора в космосе, который вращается вокруг Земли на высоких скоростях, тем самым повреждая или уничтожая другие космические объекты. Увеличивающееся количество космического мусора заставляет принимать решения по его ликвидации.

Международная группа ученых под руководством профессора Гуйлема Англада-Ескюде (Guillem Anglada-Escude) и Пола Батлера (Paul Butler) из Института Карнеги по науке в США обнаружили планету похожую на землю Супер-Земля на расстоянии 22 световых лет от Земли.

NASA выпустили первый в истории видеоролик с записью тёмной стороны Луны. До этого Луну можно было увидеть только на фотографиях, ну или в фантастических фильмах. Видео было снято 19 января с помощью камеры установленной на борту одного из изобретенных зондов GRAIL , выпущенного в космос в сентябре 2011 года.

Существование НЛО не является точно установленным фактом, у большинства людей имеются сомнения по этому поводу. Вот и в этот раз, ученые НАСА развеяли предположение о существовании инопланетян. В последних новостях космоса за следы НЛО был принят странный символ в виде треугольника.

Покорить космос пытаются различными способами, в том числе роботами в задачи которых входить исследование других планет. Национальное управление по аэронавтике и освоению космического пространства США (NASA) разработали необычное роботизированного робота паука Spidernaut.

Второй космический аппарат GRAIL (Gravity Recovery And Interior Laboratory), запущенный в космос в сентябре 2011 г. как сообщили новости космоса, достиг орбиты Луны 31 декабря, в самый Новый год, когда на земле начинали праздновать и дарить друг другу новогодние гаджеты . Спутники GRAIL помогут учёным составить самую точную гравитационную карту Луны. Прежде чем спутники достигли своей цели, им пришлось преодолеть путь на который ушло несколько месяцев.

В 2017 году исполняется 60 лет с начала практического освоения космического пространства человеком. За эффектными стартами космических кораблей стоят высокие технологии и смелые инженерные решения, которые делают возможными всё более далёкие и длительные космические экспедиции. Готовятся пилотируемые полёты на Луну и Марс, а автоматические станции уже достигли пределов Солнечной системы. О некоторых передовых космических разработках читателям РИА "Новости" рассказывает фотолента.

Фотолента подготовлена при поддержке Национального исследовательского технологического университета "МИСиС".

© РИА Новости Успешное освоение космоса невозможно без надежных космических кораблей. В России разрабатывается пилотируемый транспортный корабль нового поколения (ПТК) «Федерация». На борту «Федерации» могут достаточно комфортно разместиться до шести членов экипажа.

1 из 11

Успешное освоение космоса невозможно без надежных космических кораблей. В России разрабатывается пилотируемый транспортный корабль нового поколения (ПТК) «Федерация». На борту «Федерации» могут достаточно комфортно разместиться до шести членов экипажа.

На эффективность работы космонавтов значительно влияет правильная организация пространства. В обитаемом отсеке «Федерации», помимо систем управления, имеются кухонный блок, медицинский пункт, туалет и помещение для уединения. Дизайн и эргономика интерьера ПТК «Федерация» созданы в Инжиниринговом центре прототипирования высокой сложности НИТУ «МИСиС».


2 из 11

На эффективность работы космонавтов значительно влияет правильная организация пространства. В обитаемом отсеке «Федерации», помимо систем управления, имеются кухонный блок, медицинский пункт, туалет и помещение для уединения. Дизайн и эргономика интерьера ПТК «Федерация» созданы в Инжиниринговом центре прототипирования высокой сложности НИТУ «МИСиС».

© НИТУ "МИСиС", Владимир Пирожков

Новый корабль получит новые полетные кресла из углепластика. Впервые в российской космонавтике предусмотрена регулировка размеров, что позволяет подогнать кресло под космонавта любого роста. Таким образом, кресла становятся многоразовыми и их больше не нужно отливать отдельно под каждого члена экипажа.


3 из 11

Новый корабль получит новые полетные кресла из углепластика. Впервые в российской космонавтике предусмотрена регулировка размеров, что позволяет подогнать кресло под космонавта любого роста. Таким образом, кресла становятся многоразовыми и их больше не нужно отливать отдельно под каждого члена экипажа.

© НИТУ "МИСиС", Владимир Пирожков

© НИТУ "МИСиС", Сергей Гнусков В космической технике используются самые современные материалы. Один из них – гибридное металл-органическое соединение – перовскит. Перовскиты могут применяться в гибких солнечных батареях, светодиодах, лазерах, мониторах и фотодекторах высокой чувствительности. Ряд ученых даже предсказывает в ближайшее время «перовскитовую революцию», которая кардинально изменит многие технологии.


4 из 11

В космической технике используются самые современные материалы. Один из них – гибридное металл-органическое соединение – перовскит. Перовскиты могут применяться в гибких солнечных батареях, светодиодах, лазерах, мониторах и фотодекторах высокой чувствительности. Ряд ученых даже предсказывает в ближайшее время «перовскитовую революцию», которая кардинально изменит многие технологии.

© НИТУ "МИСиС", Сергей Гнусков

© РИА Новости В космосе нет «станций подзарядки», поэтому для дальних экспедиций необходимы источники энергии, способные без замены и обслуживания работать десятки лет. На фото бетавольтаический преобразователь («ядерная батарейка») – источник электроэнергии, получаемой за счет преобразования энергии распада радиоактивных материалов.


6 из 11

В космосе нет «станций подзарядки», поэтому для дальних экспедиций необходимы источники энергии, способные без замены и обслуживания работать десятки лет. На фото бетавольтаический преобразователь («ядерная батарейка») – источник электроэнергии, получаемой за счет преобразования энергии распада радиоактивных материалов.

© РИА Новости В различных устройствах корабля – от двигателей до систем навигации – необходимы мощные и эффективные источники магнитного поля. Такими источниками являются постоянные магниты на основе редкоземельных магнитотвердых материалов. Они способны работать при экстремальных температурах открытого космоса (от – 180 до +150 градусов Цельсия).


Передовые технологии чаще всего создаются для космической отрасли или на стыке с ней. Впоследствии многие из них обретают «вторую жизнь», становясь неотъемлемой частью жизни землян. Как это происходит и почему некоторые продукты космических технологий буквально перерождаются на Земле, разбиралась «Лента.ру».

Среди многих людей, которые едва разбираются в космической тематике, бытует мнение, что пилотируемая космонавтика -отрасль, исключительно нацеленная на престиж страны и довольно бесполезная с практической точки зрения. Ведь после высадки астронавтов на Луну человечество не продвинулось дальше МКС, а тем временем беспилотные аппараты добрались аж до Плутона. Но это совсем не так: именно для космоса создаются самые современные технологии, которые после испытаний и некоторых изменений попадают на Землю, где становятся массовым продуктом.

Козырные карты

Практически у каждого на смартфоне установлены картографические сервисы. При этом немногие задумываются, как эти карты появились и почему они настолько точные. Объяснение этому есть, оно довольно простое: добиться такой точности при столь огромных масштабах удалось благодаря космическим аппаратам, которые на протяжении многих лет проводят дистанционное зондирование Земли.

Так как мониторинг из космоса ведется на постоянной основе, благодаря спутниковым технологиям удается, например, предупреждать стихийные бедствия и оценивать ущерб от них. В частности - наводнения и лесные пожары. В случае последних, особенно когда они происходят в удаленных районах, свежие спутниковые снимки особенно актуальны, ведь они показывают масштаб пожаров и направление распространения огня. Вкупе с метеорологическими прогнозами подобная информация позволяет оперативно разработать стратегию борьбы с возгораниями.

Фото: Алексей Максименко / Globallookpress.com

Кроме всего прочего, дистанционное зондирование Земли позволяет проводить мониторинги сельскохозяйственного, природоохранного и строительного характера, в том числе и выявляя законодательные нарушения.

Всеми этими делами за пределами планеты занимается Государственная корпорация «РОСКОСМОС». Но не каждому известно, что Корпорация активно работает и на Земле.

Атомное качество

Одно из предприятий, входящих в структуру РОСКОСМОСА и работающих по широкому профилю, - это Корпорация ВНИИЭМ. Созданный в 1941 году для разработки и быстрейшего выпуска электротехнических средств для обороны Москвы ВНИИЭМ сравнительно быстро укрупнился и стал одним из главных научно-производственных предприятий Советского Союза, а затем и России.

Сейчас один из главных продуктов ВНИИЭМ - системы управления АЭС. Еще в советские времена предприятие создало электронную «начинку» для Ленинградской, Курской и Чернобыльской атомных электростанций. А сейчас ВНИИЭМ разрабатывает комплексы электрооборудования системы управления и защиты для водо-водяных энергетических реакторов. Устанавливаются подобные системы и за рубежом, например на иранской АЭС «Бушер».

Фото: Ahmad Halabisaz / Zumapress / Globallookpress.com

Еще одна не менее интересная разработка ВНИИЭМ - бесконтактные электродвигатели постоянного тока. Их внутренняя полость надежно изолирована от внешней среды, что существенно расширяет область их применения. Например, бесконтактные электродвигатели, первоначально предназначенные исключительно для космической отрасли, теперь широко применяются и в других экстремальных условиях, например под водой. Помимо бесконтактных электродвигателей есть и электронасосы, которые способны выполнять даже самые сложные задания в суровых условиях.

Также ВНИИЭМ производит электротехнические и конструкционные материалы самого широкого применения, среди которых - композиционные материалы с впечатляющими характеристиками и с сохранением высоких изоляционных свойств при сверхвысоких температурах.

В стороне от вполне «бытовых» разработок не остался и известный Центр им. Хруничева, тоже входящий в периметр РОСКОСМОСА. А в частности - его «дочка», Усть-Катавский вагоностроительный завод им. С.М. Кирова, основанный в 1758 году, одно из старейших предприятий России. Сейчас здесь производят трамвайные вагоны, в том числе и самые современные, которые вскоре будут ездить по улицам крупнейших городов России.

А еще завод выпускает целую серию оборудования для топливно-энергетического комплекса, в том числе газорегулирующее и насосное оборудование, а также трубопроводную арматуру, пользующиеся огромным спросом на «земных» предприятиях.

Лестницы в небо

Существует и такое предприятие, как АО «Государственный ракетный центр имени академика В.П. Макеева», где производят не только боевые ракетные комплексы, но и вполне гражданскую продукцию. Например, пожарные автоподъемники - без таких приспособлений бороться с пожарами и спасать жизни людей во многих случаях не представлялось бы возможным. Отдельно стоит отметить, что автоподъемники предназначены для работы на высоте вплоть до 50 метров.

В ракетном центре также производят и такие необычные для России изделия, как ветроэнергетические установки с вертикальной осью вращения. Интеграция подобных разработок в соответствующих районах страны позволит не только серьезно сэкономить на электричестве, но и уменьшить ущерб, который люди наносят природе.

Кроме того, на предприятии налажено производство не менее уникального горно-шахтного оборудования, оборудования для нефтеперерабатывающей промышленности, а также гидравлических монтажных инструментов.

Входящий в состав РОСКОСМОСА Златоустовский машиностроительный завод не ограничивается созданием оборудования для космоса и передовых образцов оружия. Так, именно там производят современные электрические и газоэлектрические, а также настольные плиты. Такие продукты определенно могут пригодиться в любом домашнем хозяйстве.

Помимо этого, на заводе налажено производство медицинского оборудования и радиаторов. Последние отличаются повышенной тепловой мощностью и помогают в создании энергоэффективной отопительной системы.

Так что космос везде вокруг нас, и предприятия РОСКОСМОСА этому проникновению активно способствуют.

Александр Владимирович Фролов

Новые космические технологии

Существует только один истинный закон – тот, который помогает стать свободным.

Ричард Бах

«Чайка по имени Джонатан Ливингстон»

Предисловие

Движение – это изменение места положения объекта, процесс, происходящий как в пространстве, так и во времени. Мы существуем в движении, благодаря тому, что находимся на поверхности планеты, летящей в космосе вокруг Солнца, и вместе с ним в Галактике. С другой стороны, каждая частица вещества материальных объектов является эфиродинамическим процессом, более или менее устойчивым вихревым потоком эфирной среды. Таким образом, в реальном мире нет ничего неподвижного, все объекты находятся в движении. Мы замечаем движение, как изменение места положения, или другое изменение параметров процесса существования материи. Процесс движения не может останавливаться до тех пор, пока материя существует. С данной точки зрения, мы будем рассматривать способы создания движущей силы, действующей на тело, не забывая о том, что все материальные объекты состоят из микрочастиц, и находятся на поверхности нашей планеты. Говоря о перемещении тел, необходимо понимать, что при этом, так или иначе, приходит в движение комплекс частиц материи, существующий при определенных условиях.

Практическое применение процесса движения состоит в том, чтобы перемещать объект, например, пассажиров и груз, из одной точки пространства в другую, по возможности, с минимальными затратами времени. Процесс движения, обычно, происходит с некоторой скоростью, но, как любое другое явление, имеет два «предельных случая»: в одном из них, тело мгновенно меняет местоположение в пространстве, а во втором, тело мгновенно меняет свое положение на оси времени. Первый случай относится к телепортации, а второй – к перемещениям во времени, без изменения положения в пространстве. Мы рассмотрим различные направления развития технологий перемещения в пространстве и времени, включая и эти два предельных случая.

Обычные способы перемещения нам хорошо известны, основной из них – реактивный. Пешеход отталкивается от опоры ногами, автомобиль отталкивается от опоры при вращении колеса, и при этом, опора отталкивается назад, а транспорт получает реактивный импульс, и движется вперед. Лодка может приводиться в движение веслами, водометом или винтом, отталкивая назад воду, создавая реактивный эффект. При таком способе, строго выполняется закон сохранения импульса, который всем нам хорошо знаком: в результате реактивного взаимодействия, каждое из тел получает одинаковый импульс, который равен произведению массы и скорости, для каждого из двух взаимодействующих тел. Ракетные движители, винтовые или турбореактивные самолеты, и другая техника работает в точном соответствии с данным законом сохранения импульса.

Ускорение летательного аппарата, например, ракеты, зависит от того, как много, и с какой скоростью, топливо будет выбрасываться через сопло ракеты во внешнюю среду. Отметим, что, для создания движущей силы, любой реактивный аппарат тратит энергию, чтобы придать ускоренное движение реактивной массе. При этом, выбрасываемое во внешнюю среду топливо увеличивает кинетическую энергию молекул среды, в конечном итоге, увеличивая температуру окружающей среды, нагревая ее. В таком случае, можно сказать, что увеличение тепловой энергии, кинетической энергии молекул окружающей среды, эквивалентно увеличению кинетической энергии летательного аппарата, или другого движущегося тела, использующего реактивный принцип. В этом проявляется закон сохранения импульса и энергии.

Существуют другие, давно известные методы, похожие на реактивный принцип. Эти методы также работают в строгом соответствии с законом сохранения импульса, но в обратном направлении, а именно, за счет уменьшения тепловой энергии окружающей среды. Например, парусник приводится в движение не так, как лодка или катер: он тормозит движущийся поток среды (воздух) своим парусом, что изменяет (уменьшает) кинетическую энергию потока частиц окружающей среды, для того, чтобы увеличить скорость (кинетическую энергию) парусника.

Поскольку термин «реактивный» означает «противодействующий», то принцип, противоположный реактивному, можно называть «активным», то есть «действующим». В реактивных движителях, сила, действующая на транспортное средство, создается, как реакция на увеличение энергии окружающей среды. Реактивные движители требуют источник энергии, для своей работы. В активных движителях, действующая сила создается за счет поглощения энергии окружающее среды. Благодаря этому свойству, активные движители могут служить источниками энергии, при своей работе.

В главе о нанотехнологиях мы рассмотрим метод, позволяющий создать движущую силу без затрат топлива, за счет специального рельефа поверхности наноматериала, обеспечивающего отбор кинетической энергии молекул воздуха, или другой окружающей среды. Данный материал назван «силовой активный материал». Наличие ветра, в данном случае, не имеет значения, так как при масштабах около 100 нанометров, можно сказать, что «ветер есть всегда». Молекулы воздуха, при обычном атмосферном давлении и комнатной температуре, хаотически двигаются со скоростью 500 метров в секунду, но каждая из них движется прямолинейно, без столкновений, только на небольших участках своей траектории, длиной примерно 50 – 100 нанометров. Это движение можно использовать, создав, с помощью современных нанотехнологий, специальный упорядоченный рельеф поверхности.

Итак, известные нам принципы создания движущей силы для ускорения транспортного средства работают за счет взаимодействия с окружающей средой, в соответствии с законами сохранения импульса и энергии, и другого не дано. Отдельно можно отметить, что выполнение данных законов не требует выброса реактивной массы за пределы корпуса транспортного средства, в том числе, и в ракетной и космической технике. Существуют известные технические решения, позволяющие получить реактивный макроимпульс, действующий на корпус транспортного средства, при выбросе сгораемого топлива из движителя в своеобразный «глушитель», находящийся внутри корпуса транспортного средства. В данном «глушителе», микроимпульсы частиц реактивной струи топлива теряют свою кинетическую энергию, и она переходит в окружающую среду в виде теплового излучения. При таком способе создания движущей силы, охлажденная рабочая реактивная масса вещества может быть возвращена в камеру сгорания, где она будет использоваться в новых циклах «нагрева – выброса – охлаждения – возврата».

Рассматривая движение в воздухе, в воде или на поверхности опоры (дороги), мы можем описать почти все известные нам конструкции движителей транспортных средств. Все они являются реактивными или активными движителями. Не являются исключением и так называемые инерциоиды – устройства, использующие для создания движущей силы свойство тел, которое мы обычно называем «инерциальной массой». В главе про инерциоиды, мы рассмотрим физический механизм возникновения инерции при ускоренном движении тел и варианты его практического использования, с точки зрения эфирной теории.

Отдельно от активных и реактивных методов, имеет смысл показать такие способы создания движущей (подъемной) силы, которые обусловлены градиентом давления среды. Перепад давления заставляет воздушный шар подниматься вверх. Теория воздухоплавания проста: окружающая среда имеет градиент плотности, а поскольку плотность среды внутри шара меньше, чем снаружи, то давление окружающей среды вытесняет шар вверх. Аналогично, сила Архимеда заставляет всплывать тела меньшей плотности, чем вода. Градиент давления в среде, в данных случаях, создает гравитационное поле планеты. По этой причине, эти силы действуют в вертикальном направлении.

Разность давления среды возникает также при относительном движении крыла, имеющего профиль Жуковского – Чаплыгина, и окружающей среды, что создает подъемную силу, действующую на крыло со стороны среды. Градиент давления среды работает похожим образом в известном «эффекте Магнуса», который будет рассмотрен в отдельной главе. Силы такой природы могут быть направлены в любую сторону, что выгодно отличает данный метод от методов воздухоплавания.

Физика, как и все естествознание, есть попытка изучить и понять каким образом устроен, то есть, создан, наш мир. В теологии много сказано о тройственной природе всего сущего. Используя метод аналогий между явлениями в трех физических средах, переходя от гидродинамики и аэродинамики к эфиродинамике, мы можем сохранять терминологию, и говорить об эфире разной температуры, разной плотности, которая обуславливает определенное статическое давление. Как и в газодинамике, в эфиродинамике удобно также использовать понятие о «динамическом давлении», которое также зависит от скорости потока. Полагая, что в эфиродинамике выполняется закон Бернулли о полном давлении, мы имеем возможность конструировать технические устройства – движители, работающие не в воздухе или воде, а в вакууме (эфирной среде). При таком подходе, от воздухоплавания мы можем перейти к эфироплавательным аппаратам.

Представьте мир, в котором штормы, ураганы, торнадо, наводнения и молнии больше не опасны для человека. Мир, в котором перелет от Лондона до Сиднея занимает один час. Вообразите будущее, в котором наши познания о материи настолько глубоки, что путешествия во времени становятся реальностью. Над этими технологиями уже работают ученые в Калифорнии, в Пало-Альто, в лабораториях компании Lockheed Martin - мирового гиганта в области авиакосмической техники и авиастроения.

Lockheed Martin работает бок о бок с NASA, ведущими мировыми университетами и мощными коммерческими партнерами. Ученые сосредоточены на четырех проектах, которые коренным образом изменят наш мир:

  • сохранение человеческой жизни;
  • открытие новых знаний о происхождении Вселенной;
  • полеты со скоростью звука;
  • предотвращение конца света.

Следуя за молнией

H. David Seawell/Corbisimages.com

В мае торнадо, наводнения и другие природные катастрофы обошлись экономике США в сумму более $4,5 млрд. По данным страховой компании AON, за один месяц произошло 412 торнадо. В Китае в том же месяце 81 человек погиб и 100 000 домов были повреждены и разрушены с приходом дождей Мэй-ю.

Никто не застрахован от погодных катаклизмов. В 2011 году в результате наводнения в Таиланде пострадали заводы по производству компьютерных комплектующих, в результате во всем мире поднялись цены на жесткие диски.

Точный прогноз наступающего торнадо поможет спасти жизни. Карта молний (GLM) даст людям шанс укрыться от катастрофы.

Скотт Фос (Scott Fouse), вице-президент Lockheed Martin’s Advanced Technology Center, рассказывает, что молнии формируются в облаках и только через некоторое время достигают земли, поэтому можно предугадывать бедствие. Датчики для сбора данных о молниях ученые подключат к американскому спутнику GOES-R, который запустят в следующем году.

Главный инженер спутника GOES-R Стивен Джолли объясняет, что датчики выполнены с использованием технологии телескопа «Хаббл», только теперь мы будем смотреть не на звезды, а на Землю. Торнадо начинается через 10 минут после начала активности молний, и эти 10 минут спасут множество жизней.

Погодный трекер, снимая Землю со скоростью 500 кадров в секунду, поможет самолетам пробраться сквозь бурю и пошлет предупредительный сигнал электрическим сетям, находящимся под угрозой на Земле. Ученые планируют развернуть систему GLM над всем миром.


John Agnone/Corbisimages.com

Кроме плохой погоды, угрозу для электрических систем и авиации создают корональные выбросы массы - вещества из солнечной короны. Преодолев миллиарды километров в космосе, частицы вещества достигают Земли через 1–3 дня. Даже небольшие выбросы могут ухудшить сигнал от спутников, и мы потеряем контроль над самолетами и электрическими системами.

Чем крупнее выброс, тем опаснее последствия. В зависимости от времени, когда случится выброс, от места на солнце, в котором это произойдет, и от направления движения частиц, некоторые части мира могут лишиться электроэнергии на срок до 5 месяцев. Выплаты страховых компаний, связанные с ущербом от выбросов корональных масс, составляют около $10 млрд в год. Ультрафиолетовый тепловизор, установленный на спутнике GOES-R, будет заранее предупреждать о предстоящих выбросах.

Еще один инструмент на GOES-R - geoCARB - разрабатывается совместно с университетом Оклахомы. Он измеряет уровень углекислого газа в атмосфере Земли, чтобы мы могли прогнозировать изменения, связанные с его количеством.

Путешествия во времени и съемки зарождающихся галактик

Lockheed Martin и университет Аризоны разрабатывают суперчувствительную камеру ближнего инфракрасного диапазона, которой надеются заснять свет самых ранних звезд и галактик на стадии их формирования. Астрономы установили в камеру коронограф, который делает снимки слабовидимых объектов вблизи ярких источников. Механизм работы коронографа в NIRCam похож на то, когда мы прикрываем глаза ладонью от солнечного света, чтобы разглядеть что-то.

NIRCam будет запущена в космос на борту космического телескопа имени Джеймса Уэбба в октябре 2018 года из Французской Гвианы с помощью ракеты «Ариан-5». При помощи спектрометров ученые узнают больше о природе света и увидят, как формируются газовые облака. Это поможет многое понять о происхождении Вселенной.

С NIRCam исследователи изучат темную материю и темную энергию. Сейчас они скрыты от наших телескопов, но мы знаем, что они существуют. Эти знания заложат фундамент в понимание взаимодействия пространства и времени.

Мы считаем, что время движется в одном направлении, но материя не такая, какой мы ее представляем. Существуют впадины в пространстве, вызванные крупными объектами, такими как Солнце, например. Может ли это открытие привести к путешествиям во времени? Я ничего не исключаю. В старом сериале Star Trek рассказывалось о многих подобных технологиях, и мой отец, физик, смеялся над ними. Теперь эти технологии становятся реальностью. Когда мы поймем основы происхождения Вселенной, мы сможем объяснить все явления, которые не можем осознать сейчас.

Стивен Джолли

Исследования с NIRCam важны не только для космологов, но и для всего мира: они повлияют на систему верований и изменят религиозные представления человечества.

В двадцать раз быстрее звука


Navneet Yadav/Flickr.com

Идея гиперзвуковых путешествий не нова. Термин появился в 70-е годы и обозначал скорость в 5 Махов, то есть в 5 раз превышающую скорость звука. Множество проектов посвящено попыткам преодолеть скорость звука в десятки раз. Разработчики из Германии к 2030 году планируют запустить Hypersonic SpaceLiner, который сможет долететь из Европы до Австралии за 90 минут. Компания Lockheed Martin занята разработкой технологий, позволяющих преодолеть скорость в 20 Махов - 24 498 км/ч - и скорость в 30 Махов.

Попытки достичь скорость в 20 Махов сорвались из-за отсутствия надежных материалов, которые смогли бы выдержать нагрев, возникающий на этих скоростях. Сейчас у ученых есть материал, который охлаждается самостоятельно, «проливая» электроны, как человеческое тело выделяет пот.

Компания Lockheed Martin работает совместно с Имперским колледжем Лондона, который владеет гиперзвуковой аэродинамической трубой, необходимой для испытаний материалов. Сверхзвуковые полеты нужны не только обычным пассажирам, чтобы быстро перемещаться из страны в страну. Они важны для оказания незамедлительной гуманитарной помощи или помощи жертвам стихийных бедствий, хотя в первые годы использования стоимость сверхзвуковых перелетов будет очень высокой.

Наряду с гиперзвуковыми материалами для создания машин будущего будут использоваться другие разработки. Например, углеродные нанотрубки, которые в 50 000 раз тоньше человеческого волоса, будут использоваться в аккумуляторах.

Мы используем космические технологии в авиастроении, в автомобилестроении и уже в повседневной жизни. Мы изобрели датчики с источником питания, который может самостоятельно включаться и выключаться, без проводов. Это позволит создавать спутники, в тысячи раз меньшие по размеру, чем нынешние. А какими будут автомобили? Кто знает!

Стивен Джолли

Предотвращение конца света

В 2013 году в Челябинске упал метеорит размером около 15 метров в поперечнике, пострадало около 2 000 человек. Это первый случай в новейшей истории, когда упал крупный метеорит и вызвал значительные разрушения. Небольшие метеориты постоянно падают на Землю. Глобальную угрозу может представлять метеорит размером около 400 метров в диаметре. Но такие прилетают на Землю раз в тысячу лет, по словам ученых из NASA.

В настоящее время NASA наблюдает более 1 400 астероидов, которые могут нанести значительный ущерб. Землю защищают планеты-гиганты Солнечной системы, которые «оттягивают» метеориты на себя. Поэтому последний серьезный метеорит упал на Землю в 1908 году опять же на территории России и вызвал землетрясение силой 5 баллов по шкале Рихтера. Место его падения оказалось безлюдным, только один человек погиб. Если бы метеорит упал на 4 часа и 47 минут позже, он стер бы с лица Земли Санкт-Петербург, население которого составляло на тот момент более миллиона человек.

66 миллионов лет назад, во времена Мелового периода, когда по Земле бродили динозавры, на полуостров Юкатан в Мексике упал метеорит размером около 10 км в ширину, образовав кратер Чиксулуб. Сила воздействия была эквивалентна миллиарду бомб, какие были сброшены на Хиросиму, и вызвала химическую реакцию, которая «вскипятила» Землю.


News.nationalgeographic.com

Ученые из NASA и Lockheed Martin работают над тем, чтобы предотвратить подобные катастрофы в дальнейшем. NASA ведет каталог околоземных объектов с 1998 года, а в 2016 году планирует запустить миссию, которая изменит отношения человечества с астероидами.

Беспилотная миссия OSIRIS-REX отправится к астероиду Bennu, одному из самых потенциально опасных астероидов. Высока вероятность, что он врежется в Землю в конце XXII века. OSIRIS-REX подлетит к Bennu, возьмет образец его состава и принесет на Землю. Ученые надеются понять, каким образом можно повлиять на астероид и его орбиту. Также миссия может найти на астероиде еще не известные ученым химические элементы.

Сохранение нашей планеты - это больше, чем просто ее защита от падения метеорита. Например, одна из самых больших загадок: что произошло с атмосферой на Марсе, что вызвало кардинальные изменения климата? В 2013 году был запущена миссия MAVEN, которая, возможно, даст ответы на эти вопросы и поможет понять, не уготовано ли Земле будущее красной планеты.