Искусственные мембраны. Мембраны клетки

Обеспечивают целостность клетки, они обеспечивают возможность создания в ней условий для протекания всех биохимических реакций, регулирует обмен веществами и энергией с окружающей средой. Словом, это в прямом смысле слова граница между жизнью и всем, что ее окружает.

Мембрана всех клеток представляет собой двойной слой фосфолипидов — молекул с гидрофильной «головой» и несколькими гидрофобными «хвостами». В водной среде они стремятся расположиться «хвостами» внутрь, выстраиваясь ровными рядами: мембрана самособирается. Конечно, в действительности картина намного сложнее, мембрана содержит также множество белковых компонентов, гликолипидов с дополнительными «хвостами» полисахаридов, молекул холестерина, регулирующих ее вязкость и т. д. Однако именно самособирающийся фосфолипидный бислой формирует ее основу.

Именно этот базовый элемент воссоздали исследователи из группы работающего в Калифорнии профессора Нила Девараджа (Neal Devaraj), используя чисто химические методы. Конечной целью всех этих экспериментов является создание полностью искусственной жизни, полученной без какого-либо участия других живых организмов, если не считать самих экспериментаторов. Пока что все синтетические организмы, о создании которых не раз сообщали ученые, представляют собой, по сути, лишь синтетические геномы, внедренные в заранее «выпотрошенные» и подготовленные клетки бактерий. О получении искусственного живого организма с нуля пока остается лишь мечтать.

Профессор Деварадж поясняет: «Предположительно, нечто подобное уже случилось в какой-то момент в прошлом. Иначе жизнь не могла бы появиться вообще». «Мы до сих пор окончательно не представляем себе, как протекал этот фундаментальный этап, на котором неживая материя превратилась в живую, — добавляет ученый. — В конце концов подобные опыты должны рассказать нам немало о базовых химических и биологических принципах, лежащих в основе жизни».

Как уже говорилось, благодаря двойной гидрофильно-гидрофобной природе фосфолипиды , составляющие клеточные мембраны, в воде самособираются. Гидрофобные липидные «хвосты» прячутся от полярной водной среды, а гидрофильные фосфатные «головки», наоборот, погружаются в нее. Так, ведомые лишь гидрофильно-гидрофобными взаимодействиями, молекулы выстраиваются в двойной слой мембраны и создают барьер, отделяющий клетку от внешнего мира.

В клетках современных организмов производство фосфолипидов обеспечивают специальные белки, интегрированные в мембраны клеток. Однако такое возможно лишь уже при наличии мембраны, а о том, как синтезировались липиды первых живых клеток, без участия белковых ферментов, пока остается лишь гадать. Возможный вариант такой реакции и предложили Деварадж и его коллеги.

«Эта реакция чисто искусственная, она не имеет известного нам аналога в живой природе. Именно так можно получить клеточную мембрану с нуля, — комментирует Деварадж, — В нашей системе это происходит с участием простейшего катализатора, металлического иона».

В водной среде исходные компоненты реакции образуют стабильную эмульсию из множества нерастворимых капель. Добавление в среду ионов меди ведет к их разрушению и возможности для реагентов взаимодействовать друг с другом. По данным авторов, после 24 часов такой инкубации все капли расходятся — и появляются двухслойные мембраны. Первый шаг к полноценной жизни.

Искусственная мембрана обычно представляет собой жесткую селективно-проницаемую перегородку, разделяющую массообменный аппарат на две рабочие зоны, в которых поддерживаются различные давления и составы разделяемой смеси. Синтетические мембраны успешно используются промышленных процессов как малой так и большой мощности с середины 20-го века. В настоящий момент синтетические мембраны достаточно разнообразны по свойствам. Они производятся из органических материалов как полимерных и жидких, так и неорганических. Синтетические мембраны применяемые в разделительных процессах имеют различную геометрию и соответствующую потоку конфигурацию. Мембраны могут быть выполнены в виде плоских листов, труб, капилляров и полых волокон. Мембраны выстраиваются в мембранные системы.

Наиболее распространенные искусственные мембраны - полимерные мембраны . Они разделяются по поверхностному химическому составу, структуре, морфологии и способу изготовления. Химические и физические свойства синтетических мембран и разделяемые субстанции также как инициирующая сила определяются индивидуальными особенностями мембранного сепарационного процесса. Наиболее часто используемые инициирующие силы в индустриальных мембранных процессах - давление и разница концентрации. Соответствующие мембранные процессы называют фильтрацией. При определённых условиях, преимущественно могут быть использованы керамические мембраны .

Некоторые мембраны работают в широком диапазоне мембранных операций, таких, как микрофильтрация , ультрафильтрация , обратный осмос , первапорация , сепарация газа, диализ или хроматография . Способ применения зависит от типа функциональности включенной в мембрану, которые могут быть основаны на изоляции по размеру, химическом родстве или электростатике.

Они также классифицируются по форме и режиму применения. Наиболее известные мембранные процессы включают очистку воды, обратный осмос, обезвоживание природного газа, удаление частиц с помощью микрофильтрации и ультрафильтрации, удаление бактерий из молочных продуктов, диализа, гемодиализа или в качестве компонентов топливных элементов.

Частично проницаемая мембрана -- искусственная мембрана, предназначенная для разделения смеси жидкостей или газов на составляющие компоненты. Также называется избирательно-проницаемой мембраной, полупроницаемой мембраной или дифференциально-проницаемой мембраной. Она позволяет определённым молекулам или ионам проходить через неё благодаря диффузии. Скорость прохождения зависит от давления, концентрации и температуры молекулы или растворённых веществ с обеих сторон, а также проницаемости мембраны для каждого раствора.

Микрофильтрация -- процесс разделения жидких или газовых смесей от взвешенных частиц диаметром 100-0,1 мкм и выше. Фильтрация производится на мелкозернистом материале, песок, кварц и т. д., для грубой фильтрации больших частиц. Процесс проводят в тупиковом режиме с регенерацией обратным током жидкости/газа.

Обратный осмос -- прохождение воды или других растворителей через мембрану из более концентрированного в менее концентрированный раствор в результате воздействия давления, превышающего разницу осмотических давлений обоих растворов. Обратный осмос используется в различных технологиях очистки воды от примесей, в том числе для опреснения воды и очищения питьевой воды для различных целей с начала 1970-х годов.

Первапорация - технология разделения преимущественно жидких смесей различных веществ, при которой поток жидкости, содержащий два или более смешивающихся компонента помещен в контакт с одной стороной непористой полимерной мембраны или молекулярно-пористой неорганической мембраны (типа цеолитной мембраны), в то время как с другой стороны используется вакуумная или газовая продувка. Компоненты жидкого потока абсорбируются в/на мембране, проникают через мембрану, и испаряются в паровую фазу (откуда и образуется слово "pervaporate"). Образующийся пар, названный "пермеатом", конденсируется. Вследствие различных видов питающих смесей, имеющие различные сродства к мембране и различные скорости диффузии через мембрану, даже компонент, находящийся в малой концентрации питающей среде, может быть обогащен с высокой степенью в пермеате. Таким образом, состав растворенного вещества может сильно отличаться от того, что находится в виде пара, образующегося после развития свободного равновесия жидкость-пар. Коэффициенты обогащения, степень пермеирования концентрации питающей смеси находятся в диапазоне от единиц до нескольких тысяч, в зависимости от состава, мембраны и условий процесса.

Первапорация отличается относительно низким удельным энергопотреблением по сравнению с мембранными технологиями, использующими пористые мембраны.

Разделение идёт на молекулярном уровне, что повышает избирательность.

Диализ -- освобождение коллоидных растворов и растворов высокомолекулярных веществ от растворённых в них низкомолекулярных соединений при помощи полупроницаемой мембраны. При диализе молекулы растворенного низкомолекулярного вещества проходят через мембрану, а неспособные диализировать (проходить через мембрану) коллоидные частицы остаются за ней. Простейший диализатор представляет собой мешочек из коллодия (полупроницаемого материала), в котором находится диализируемая жидкость. Мешочек погружают в растворитель (например в воду). Постепенно концентрации диализирующего вещества в диализируемой жидкости и в растворителе становятся равными. Меняя растворитель, можно добиться практически полной очистки от нежелательных примесей. Скорость диализа обычно крайне низка (недели). Ускоряют процесс диализа увеличивая площадь мембраны и температуру, непрерывно меняя растворитель. Процесс диализа основан на процессах осмоса и диффузии, что объясняет способы его ускорения.

· Диализ применяют для очистки коллоидных растворов от примесей электролитов и низкомолекулярных неэлектролитов. Диализ применяют в промышленности для очистки различных веществ, например в производстве искусственных волокон, при изготовлении лекарственных веществ.

· Материал, прошедший через мембрану, называется диализат.

Гемодиализ (от гемо… и греч. dialysis -- разложение, отделение) -- метод внепочечного очищения крови при острой и хронической почечной недостаточности. Во время гемодиализа происходит удаление из организма токсических продуктов обмена веществ, нормализация нарушений водного и электролитного балансов. Гемодиализ осуществляют обменным переливанием крови (одновременное массивное кровопускание с переливанием такого же количества донорской крови), обмыванием брюшины солевым раствором (перитонеальный диализ), промыванием слизистой оболочки кишечника умеренно гипертоническими растворами (кишечный диализ). Наиболее эффективным методом гемодиализа является применение аппарата искусственная почка.

Хроматография (от греч. чсюмб - цвет) -- метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами -- неподвижной и подвижной (элюент ). Название метода связано с первыми экспериментами по хроматографии, в ходе которых разработчик метода Михаил Цвет разделял ярко окрашенные растительные пигменты.

Жидкие мембраны относятся к классу синтетических мембран, изготовленных их эластичных материалов. Некоторые типы жидких мембран применяются в промышленности: эмульсионные мембраны, задерживающие мембраны, расплавы солей, мембраны из холофайбера. Жидкие мембраны были достаточно изучены, но имеют ограниченное применение в промышленности.

Полимерные мембраны возглавляют рынок в промышленной сепарации, потому что достаточно конкурентноспрособны по эксплуатационным и экономическим параметрам. Многие полимеры доступны в качестве материала для них, но выбрать полимер для определенной цели зачастую оказывается сложно. Полимер должен иметь соответствующие характеристики для назначенной задачи. Полимер зачастую должен иметь высокую устойчивость к отделяемым молекулам (особенно в биотехнологическом применении) и удовлетворять жестким условиям очистки. Он должен быть совместим с технологическим процессом изготовления мембраны.

Полимер должен быть пригодным к разработке мембраны по таким параметрам как устойчивость и взаимодействие полимерных связей, пространственная однородность, полярность полимерных связей и его функциональная группа. Полимеры могут быть аморфными и полукристаллическими по структуре (также иметь различную температуру плавления), влияющие на параметры применения мембраны. Также немаловажными являются доступность и адекватная стоимость для формирования критерия низкой стоимости мембранного процесса. Многие мембранные полимеры дополняются примесями, модифицируются или добавляются как примесь для улучшения их параметров. В синтезе мембран наиболее распространены ацетат целлюлозы, нитраты и сложные эфиры (СА, CN и СЕ), полисульфон (PS), полиэстер сульфон (PES), полиакрилонитрил (PAN), полиамид, полиимид, полиэтилен и полипропилен (PE и РР), политетрафлюороэтилен (PTFE), поливинилоэденохлорид (PVDF), поливинилхлорид (PVC)

Полиэтилен (PE)политетрафлюороэтилен (PTFE) полипропилен (РР)

Аппарат на две рабочие зоны, в которых поддерживаются различные давления и составы разделяемой смеси .

Мембраны могут быть выполнены в виде плоских листов, труб, капилляров и полых волокон . Мембраны выстраиваются в мембранные системы. Наиболее распространенные искусственные мембраны - полимерные электролитические мембраны . При определённых условиях, преимущественно могут быть использованы керамические мембраны .

Некоторые мембраны работают в широком диапазоне мембранных операций, таких, как микрофильтрация , ультрафильтрация , обратный осмос , первапорация , сепарация газа , диализ или хроматография . Способ применения зависит от типа функциональности включеной в мембрану, которые могут быть основаны на изоляции по размеру, химическом родстве или электростатике.

Использование

Мембраны наиболее часто используются для очистки воды, удаления микроорганизмов из молочных продуктов, опреснения воды, дегидратирования природного газа, гемодиализа или в качестве компонентов топливных элементов.

См. также

Напишите отзыв о статье "Искусственная мембрана"

Литература

  • Ю. И. Дытнерский, В. П. Брыков, Г. Г. Каграманов . Мембранное разделение газов. - М.: Химия, 1991.

Отрывок, характеризующий Искусственная мембрана

Так, совершенно свободно разгуливая по жилищу святейшего Папы, я ломала голову, не представляя, что означал этот необъяснимый, длительный «перерыв». Я точно знала, Караффа очень часто находился у себя в покоях. Что означало только одно – в длительные путешествия он пока что не отправлялся. Но и меня он почему-то всё также не беспокоил, будто искренне позабыл, что я находилась в его плену, и что всё ещё была жива...
Во время моих «прогулок» мне встречалось множество разных-преразных приезжих, являвшихся на визит к святейшему Папе. Это были и кардиналы, и какие-то мне незнакомые, очень высокопоставленные лица (о чём я судила по их одежде и по тому, как гордо и независимо они держались с остальными). Но после того, как покидали покои Папы, все эти люди уже не выглядели такими уверенными и независимыми, какими были до посещения приёмной... Ведь для Караффы, как я уже говорила, не имело значения, кем был стоящий перед ним человек, единственно важным для Папы была ЕГО ВОЛЯ. А всё остальное не имело значения. Поэтому, мне очень часто приходилось видеть весьма «потрёпанных» визитёров, суетливо старавшихся как можно быстрее покинуть «кусачие» Папские покои...
В один из таких же, совершенно одинаковых «сумрачных» дней, я вдруг решилась осуществить то, что уже давно не давало мне покоя – навестить наконец-то зловещий Папский подвал... Я знала, что это наверняка было «чревато последствиями», но ожидание опасности было во сто раз хуже, чем сама опасность.
И я решилась...
Спустившись вниз по узким каменным ступенькам и открыв тяжёлую, печально-знакомую дверь, я попала в длинный, сырой коридор, в котором пахло плесенью и смертью... Освещения не было, но продвигаться дальше большого труда не доставляло, так как я всегда неплохо ориентировалась в темноте. Множество маленьких, очень тяжёлых дверей грустно чередовались одна за другой, полностью теряясь в глубине мрачного коридора... Я помнила эти серые стены, помнила ужас и боль, сопровождавшие меня каждый раз, когда приходилось оттуда возвращаться... Но я приказала себе быть сильной и не думать о прошлом. Приказала просто идти.

Искусственные липидные мембраны , имеющие двуслойное строение, оказались во многих отношениях сходными с биологическими мембранами. Искусственные мембраны получаются при контакте смеси фосфолипидов и нейтральных липидов , растворенных в органических растворителях, с водой.     Бимолекулярные липидные мембраны (БЛМ), называемые также бислойными или черными липидными мембранами, представляют собой широко используемую экспериментальную модель , которая позволяет воспроизводить в искусственных условиях многие свойства и характеристики биологических мембран. Как и биологические мембраны, они представляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой.

Липосомы - сферические везикулы, имеющие один или несколько липидных бислоев. Образуются в смесях фосфолипидов с водой . Внутри липосом содержится вода или раствор, в котором проводилась ультразвуковая обработка. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные транспортные и рецепторные функции клеточных мембран. В липосомы можно ввести антигены, а также ковалентно присоединить антитела и использовать их в иммунологических исследованиях . Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д.

В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-липидные структуры обычно называются протеолипосомами .

Эффективность встраивания большинства белков компонентов в искусственные мембранные системы резко зависит от липидного состава мембран, pH, солевого состава, температуры и т. д. Система протеолипосомы - коллодиевая пленка , первоначально разработанная для изучения бактериородопсина, была затем использована при исследовании целого ряда других мембранных преобразователей энергии.

Существует два основных типа искусственных мембран:

  • классические плоские,
  • сферические мембраны различного размера.

Для получения искусственных мембран используют:

  • различные фосфатиды,
  • нейтральные глицериды,
  • смеси липидов биологического происхождения, добавляя к ним холестерин, а-токоферол и другие минорные добавки.

Потенциальная ценность искусственных мембран для исследований зависит от возможности включения в них природных белков, в особенности тех, которые обладают транспортными свойствами. Липосомы, состоящие из белков и липидов, стали получать в 60-е гг. Термин протеолипосомы был введен В. П. Скулачевым. В настоящее время разработан целый ряд методов приготовления различных типов липосом и протеолипосом, а также их стандартизации по размерам, структуре, гомогенности, стабильности и другим характеристикам. Липосомы используют для доставки в клетку лекарственных и химических соединений, стабилизации ферментов в инженерной энзимологии, введения в клеточные мембраны молекул зондов, модифицирующих и моделирующих их поверхность. Большой интерес для генной инженерии и медицины представляют работы по введению в клетки при помощи липосом нуклеиновых кислот и вирусов.

С водой связаны многие структурно-функциональные свойства мембран, а также процессы стабилизации и формирования мембран. Вода входит в состав мембран и делится на:

  • свободную,
  • связанную,
  • захваченную.

Связанная и свободная вода различается по подвижности молекул воды и растворяющей способности. Наименьшей подвижностью и растворяющей способностью обладает внутренняя связанная вода . Она присутствует в липидной зоне мембран в виде отдельных молекул. Основную часть связанной воды представляет вода гидратных оболочек . Эта вода окружает полярные группы белков и липидов, имеет min подвижность и практически не обладает свойствами растворителя. Свободная вода в порах и каналах . По ней могут перемещаться свободные ионы. Она является хорошим растворителем, подвижная и обладает всеми свойствами жидкой воды.

Захваченная вода обладает изотопным движением, характерным для жидкой воды, является хорошим растворителем. Она встречается в центральной зоне мембран, между ее липидными слоями, но эта вода пространственно делится как с внеклеточной жидкостью, так и с цитоплазмой . У нее нет возможности свободно с ними обмениваться.